Skip to main content

Moving Average Smoothing Filter Matlab


Model pemindaian rata-rata dan eksponensial yang bergerak. Sebagai langkah pertama dalam bergerak melampaui model rata-rata, model jalan acak, dan model tren linier, pola nonseasonal dan tren dapat diekstrapolasi menggunakan model rata-rata bergerak atau pemulusan. Asumsi dasar di balik model rata-rata dan perataan adalah Bahwa deret waktu secara lokal bersifat stasioner dengan mean yang bervariasi secara perlahan Oleh karena itu, kita mengambil rata-rata lokal yang bergerak untuk memperkirakan nilai rata-rata saat ini dan kemudian menggunakannya sebagai perkiraan untuk waktu dekat. Hal ini dapat dianggap sebagai kompromi antara model rata-rata Dan model random-walk-without-drift Strategi yang sama dapat digunakan untuk memperkirakan dan mengekstrapolasikan tren lokal Rata-rata bergerak sering disebut versi smoothed dari seri aslinya karena rata-rata jangka pendek memiliki efek merapikan benjolan. Dalam seri aslinya Dengan menyesuaikan tingkat perataan lebar rata-rata bergerak, kita dapat berharap untuk mencapai keseimbangan optimal antara kinerja rata-rata Dan model jalan acak Model jenis rata-rata yang paling sederhana adalah rata-rata Moving Average yang sederhana. Perkiraan untuk nilai Y pada waktu t 1 yang dilakukan pada waktu t sama dengan rata-rata sederhana dari pengamatan m terakhir. Di sini dan di tempat lain saya akan menggunakan simbol Y-hat untuk menentukan ramalan dari deret waktu yang dibuat Y pada tanggal sedini mungkin dengan model yang diberikan. Rata-rata ini dipusatkan pada periode 1, yang menyiratkan bahwa perkiraan Rata-rata lokal akan cenderung tertinggal dari nilai sebenarnya dari mean lokal sekitar 2 periode Jadi, kita katakan bahwa rata-rata usia data dalam rata-rata pergerakan sederhana adalah m 1 2 relatif terhadap periode dimana ramalan dihitung Ini adalah jumlah waktu dimana ramalan akan cenderung tertinggal di belakang titik balik data Sebagai contoh, jika Anda rata-rata mendapatkan 5 nilai terakhir, prakiraan akan sekitar 3 periode terlambat dalam menanggapi titik balik Perhatikan bahwa jika m 1, Model SMA rata-rata bergerak sederhana setara dengan model jalan acak tanpa pertumbuhan Jika m sangat besar sebanding dengan panjang periode estimasi, model SMA setara dengan model rata-rata Seperti parameter model peramalan lainnya, adalah kebiasaan Untuk menyesuaikan nilai ki N agar mendapatkan yang terbaik sesuai dengan data, yaitu kesalahan perkiraan terkecil rata-rata. Berikut adalah contoh rangkaian yang nampaknya menunjukkan fluktuasi acak di sekitar rata-rata yang bervariasi secara perlahan Pertama, mari kita mencoba menyesuaikannya dengan jalan acak. Model, yang setara dengan rata-rata bergerak sederhana dari 1 istilah. Model jalan acak merespon dengan sangat cepat terhadap perubahan dalam rangkaian, namun dengan begitu, banyak noise yang didapat dalam data fluktuasi acak dan juga sinyal lokal. Berarti Jika kita mencoba rata-rata bergerak sederhana dari 5 istilah, kita mendapatkan perkiraan perkiraan yang lebih halus. Rata-rata pergerakan sederhana 5-langkah menghasilkan kesalahan yang jauh lebih kecil daripada model jalan acak dalam kasus ini Usia rata-rata data dalam hal ini Perkiraan adalah 3 5 1 2, sehingga cenderung tertinggal di belakang titik balik sekitar tiga periode. Misalnya, penurunan tampaknya terjadi pada periode 21, namun prakiraan tidak berbalik sampai beberapa periode kemudian. Tidak seperti yang lama, Perkiraan istilah dari SMA mod El adalah garis lurus horisontal, seperti pada model jalan acak Dengan demikian, model SMA mengasumsikan bahwa tidak ada kecenderungan dalam data. Namun, sedangkan prakiraan dari model jalan acak sama dengan nilai pengamatan terakhir, prakiraan dari Model SMA sama dengan rata-rata tertimbang nilai baru-baru ini. Batasan kepercayaan yang dihitung oleh Statgraf untuk perkiraan jangka panjang dari rata-rata bergerak sederhana tidak semakin luas seiring perkiraan horizon meningkat Ini jelas tidak benar Sayangnya, tidak ada yang mendasari Teori statistik yang memberi tahu kita bagaimana interval kepercayaan harus melebar untuk model ini Namun, tidak terlalu sulit untuk menghitung perkiraan empiris batas kepercayaan untuk perkiraan horizon yang lebih panjang Misalnya, Anda dapat membuat spreadsheet di mana model SMA Akan digunakan untuk meramalkan 2 langkah di depan, 3 langkah ke depan, dll dalam sampel data historis Anda kemudian dapat menghitung penyimpangan standar sampel dari kesalahan pada setiap perkiraan h Orizon, dan kemudian membangun interval kepercayaan untuk perkiraan jangka panjang dengan menambahkan dan mengurangi kelipatan dari deviasi standar yang sesuai. Jika kita mencoba rata-rata pergerakan sederhana 9-term, kita mendapatkan perkiraan yang lebih halus dan lebih banyak efek lag. Usia rata-rata adalah Sekarang 5 periode 9 1 2 Jika kita mengambil moving average 19-term, usia rata-rata meningkat menjadi 10. Tidak penting bahwa, perkiraannya sekarang tertinggal dari titik balik sekitar 10 periode. Yang jumlah smoothing paling baik untuk seri ini. Berikut adalah tabel yang membandingkan statistik kesalahan mereka, juga termasuk rata-rata 3-rata. Model C, rata-rata pergerakan 5-langkah, menghasilkan nilai RMSE paling rendah dengan selisih kecil selama rata-rata 3 dan 9 periode, dan Statistik mereka yang lain hampir identik Jadi, di antara model dengan statistik kesalahan yang sangat mirip, kita dapat memilih apakah kita lebih memilih sedikit responsif atau sedikit lebih halus dalam perkiraan. Kembali ke atas halaman. Smoothing Simple Exponential Smoothing tertimbang secara eksponensial. Rata bergerak. Model rata-rata bergerak sederhana yang dijelaskan di atas memiliki properti yang tidak diinginkan sehingga memperlakukan pengamatan k terakhir secara sama dan sama sekali mengabaikan semua pengamatan sebelumnya Secara intuitif, data masa lalu harus didiskontokan secara lebih bertahap - misalnya, pengamatan terbaru harus dilakukan. Mendapatkan bobot sedikit lebih banyak dari yang terakhir ke-2, dan yang ke-2 terakhir harus mendapatkan bobot sedikit lebih banyak dari yang ke-3 terakhir, dan seterusnya Model pemulusan eksponensial eksponensial yang sederhana menyelesaikan hal ini. Mari menunjukkan penghalusan konstan angka antara 0 dan 1 Salah satu cara untuk menulis model adalah dengan menentukan rangkaian L yang mewakili tingkat arus yaitu nilai rata-rata lokal dari rangkaian seperti yang diperkirakan dari data sampai saat ini. Nilai L pada waktu t dihitung secara rekursif dari nilai sebelumnya seperti ini. Dengan demikian, nilai smoothed saat ini adalah interpolasi antara nilai smoothed sebelumnya dan pengamatan saat ini, dimana kontrol kedekatan nilai interpolasi yang paling banyak Cent observasi Ramalan untuk periode berikutnya hanyalah nilai merapikan saat ini. Biasanya, kita dapat mengekspresikan ramalan berikutnya secara langsung dalam perkiraan sebelumnya dan pengamatan sebelumnya, dengan versi setara berikut ini. Pada versi pertama, perkiraan tersebut merupakan interpolasi. Antara perkiraan sebelumnya dan pengamatan sebelumnya. Pada versi kedua, ramalan berikutnya diperoleh dengan menyesuaikan perkiraan sebelumnya ke arah kesalahan sebelumnya dengan jumlah pecahan. Ini adalah kesalahan yang dibuat pada waktu t Pada versi ketiga, ramalannya adalah Secara eksponensial berbobot yaitu rata-rata bergerak diskon dengan faktor diskon 1. Versi interpolasi dari rumus peramalan adalah yang paling mudah digunakan jika Anda menerapkan model pada spreadsheet yang sesuai dengan satu sel dan berisi referensi sel yang mengarah ke perkiraan sebelumnya, sebelumnya. Observasi, dan sel dimana nilai disimpan. Perhatikan bahwa jika 1, model SES setara dengan model jalan acak. Jika nilai 0, model SES setara dengan model rata-rata, dengan asumsi bahwa nilai smoothing pertama ditetapkan sama dengan mean Return to top of page. Usia rata-rata data dalam perkiraan pemulusan eksponensial sederhana adalah 1 relatif Ke periode yang ramalan dihitung Ini tidak seharusnya jelas, tapi dengan mudah dapat ditunjukkan dengan mengevaluasi rangkaian tak terbatas Oleh karena itu, perkiraan rata-rata bergerak sederhana cenderung tertinggal dari titik balik sekitar 1 periode Misalnya, ketika 0 5 lag adalah 2 periode ketika 0 2 lag adalah 5 periode ketika 0 1 lag adalah 10 periode, dan seterusnya. Untuk usia rata-rata tertentu yaitu jumlah lag, perkiraan perataan eksponensial sederhana SES agak lebih unggul dari pergerakan sederhana. Rata-rata perkiraan SMA karena menempatkan bobot yang relatif lebih tinggi pada pengamatan terbaru - sedikit lebih responsif terhadap perubahan yang terjadi pada masa lalu. Misalnya, model SMA dengan 9 istilah dan model SES dengan 0 2 keduanya memiliki usia rata-rata. Dari 5 untuk da Dalam perkiraan mereka, namun model SES memberi bobot lebih besar pada 3 nilai terakhir daripada model SMA dan pada saat yang sama ia sama sekali tidak melupakan nilai lebih dari 9 periode, seperti yang ditunjukkan pada tabel ini. Keuntungan penting lainnya dari Model SES di atas model SMA adalah model SES menggunakan parameter pemulusan yang terus menerus bervariasi, sehingga dapat dengan mudah dioptimalkan dengan menggunakan algoritma pemecah untuk meminimalkan kesalahan kuadrat rata-rata Nilai optimal model SES untuk seri ini ternyata. Menjadi 0 2961, seperti yang ditunjukkan di sini. Usia rata-rata data dalam ramalan ini adalah 1 0 2961 3 4 periode, yang serupa dengan rata-rata pergerakan sederhana 6-istilah. Perkiraan jangka panjang dari model SES adalah Garis lurus horisontal seperti pada model SMA dan model jalan acak tanpa pertumbuhan Namun, perhatikan bahwa interval kepercayaan yang dihitung oleh Statgraphics sekarang berbeda dengan mode yang tampak wajar, dan keduanya jauh lebih sempit daripada interval kepercayaan untuk rand Model berjalan Model SES mengasumsikan bahwa rangkaian ini agak dapat diprediksi daripada model jalan acak. Model SES sebenarnya adalah kasus khusus model ARIMA sehingga teori statistik model ARIMA memberikan dasar yang kuat untuk menghitung interval kepercayaan untuk Model SES Secara khusus, model SES adalah model ARIMA dengan satu perbedaan nonseasonal, MA 1, dan tidak ada istilah konstan yang dikenal dengan model ARIMA 0,1,1 tanpa konstan. Koefisien MA 1 pada model ARIMA sesuai dengan Kuantitas 1- dalam model SES Misalnya, jika Anda mencocokkan model ARIMA 0,1,1 tanpa konstan pada rangkaian yang dianalisis di sini, koefisien MA 1 yang diperkirakan ternyata menjadi 0 7029, yang hampir persis satu minus 0 2961. Hal ini dimungkinkan untuk menambahkan asumsi dari tren linier konstan non-nol ke model SES Untuk melakukan ini, tentukan model ARIMA dengan satu perbedaan nonseasonal dan MA 1 dengan konstanta, yaitu model ARIMA 0,1,1 Dengan konstan Prakiraan jangka panjang akan Kemudian memiliki tren yang sama dengan tren rata-rata yang diamati selama periode perkiraan keseluruhan Anda tidak dapat melakukan ini bersamaan dengan penyesuaian musiman, karena pilihan penyesuaian musiman dinonaktifkan saat jenis model disetel ke ARIMA Namun, Anda dapat menambahkan panjang konstan - term eksponensial ke model pemulusan eksponensial sederhana dengan atau tanpa penyesuaian musiman dengan menggunakan opsi penyesuaian inflasi dalam prosedur Peramalan Persentase laju pertumbuhan inflasi yang tepat per periode dapat diperkirakan sebagai koefisien kemiringan dalam model tren linier yang sesuai dengan data di Bersama dengan transformasi logaritma alami, atau dapat didasarkan pada informasi independen lain mengenai prospek pertumbuhan jangka panjang Kembali ke atas halaman. Linear Lulus yaitu pemotretan Eksponensial ganda. Model SMA dan model SES mengasumsikan bahwa tidak ada kecenderungan Apapun dalam data yang biasanya OK atau paling tidak tidak terlalu buruk untuk prakiraan 1 langkah maju ketika data relatif noi Sy, dan mereka dapat dimodifikasi untuk menggabungkan tren linier konstan seperti yang ditunjukkan di atas Bagaimana dengan tren jangka pendek Jika rangkaian menampilkan tingkat pertumbuhan atau pola siklus yang berbeda yang menonjol dengan jelas terhadap kebisingan, dan jika ada kebutuhan untuk Perkiraan lebih dari 1 periode ke depan, maka perkiraan tren lokal mungkin juga menjadi masalah. Model pemulusan eksponensial sederhana dapat digeneralisasi untuk mendapatkan model LES eksponensial eksponensial linier yang menghitung perkiraan lokal dari tingkat dan tren. Tren waktu yang paling sederhana Model adalah model pemulusan eksponensial Brown s linier, yang menggunakan dua seri penghalusan berbeda yang berpusat pada titik waktu yang berbeda. Rumusan peramalan didasarkan pada ekstrapolasi garis melalui dua pusat. Versi yang lebih canggih dari model ini, Holt s, adalah Dibahas di bawah ini. Bentuk aljabar model pemulusan eksponensial linier Brown, seperti model pemulusan eksponensial sederhana, dapat dinyatakan dalam sejumlah perbedaan namun e Bentuk quivalent Bentuk standar dari model ini biasanya dinyatakan sebagai berikut Misalkan S menunjukkan deretan tunggal yang diraih dengan menerapkan pemulusan eksponensial sederhana ke seri Y Yaitu, nilai S pada periode t diberikan oleh. Ingatlah bahwa, di bawah perataan eksponensial sederhana, ini akan menjadi perkiraan untuk Y pada periode t 1 Kemudian, misalkan S menunjukkan rangkaian perataan ganda yang diperoleh dengan menerapkan perataan eksponensial sederhana menggunakan yang sama ke rangkaian S. Akhirnya, perkiraan untuk Y tk untuk setiap K1, diberikan oleh. Ini menghasilkan e 1 0 yaitu menipu sedikit, dan membiarkan perkiraan pertama sama dengan pengamatan pertama yang sebenarnya, dan e 2 Y 2 Y 1 yang kemudian perkiraan dihasilkan dengan menggunakan persamaan di atas. Hal ini menghasilkan nilai pas yang sama. Sebagai rumus berdasarkan S dan S jika yang terakhir dimulai dengan menggunakan S 1 S 1 Y 1 Versi model ini digunakan pada halaman berikutnya yang menggambarkan kombinasi perataan eksponensial dengan penyesuaian musiman. Holt s Linear Exponential Smoothing. Brown Model LES menghitung perkiraan tingkat dan kecenderungan lokal dengan memperlancar data terbaru, namun kenyataan bahwa hal itu terjadi dengan parameter pemulusan tunggal menempatkan batasan pada pola data sehingga sesuai dengan tingkat dan kecenderungan tidak diperbolehkan bervariasi. Di Tingkat independen Model LES Holt membahas masalah ini dengan memasukkan dua konstanta pemulusan, satu untuk tingkat dan satu untuk tren Setiap saat t, seperti pada model Brown, ada perkiraan L t tingkat lokal dan perkiraan T T dari tren lokal Di sini mereka dihitung secara rekursif dari nilai Y yang diamati pada waktu t dan perkiraan tingkat dan kecenderungan sebelumnya oleh dua persamaan yang menerapkan pemulusan eksponensial kepada mereka secara terpisah. Jika tingkat perkiraan dan tren pada waktu t-1 Masing-masing adalah L t 1 dan T t-1, maka perkiraan untuk Y t yang akan dilakukan pada waktu t-1 sama dengan L t-1 T t-1 Bila nilai aktualnya teramati, perkiraan yang diperbarui dari Tingkat dihitung secara rekursif dengan menginterpolasi antara Y t dan ramalannya, L t-1 T t-1, dengan menggunakan bobot dan 1. Perubahan pada tingkat perkiraan, yaitu L t L t 1 dapat diartikan sebagai pengukuran yang bising dari Tren pada waktu t Perkiraan perkiraan tren kemudian dihitung secara rekursif dengan menginterpolasi antara L T L t 1 dan perkiraan sebelumnya dari tren, T t-1 menggunakan bobot dan 1. Interpretasi konstanta perataan tren serupa dengan model penghalus-tingkat yang konstan dengan nilai kecil mengasumsikan bahwa perubahan tren Hanya sangat lambat seiring berjalannya waktu, sementara model dengan asumsi lebih besar bahwa ia berubah lebih cepat Model dengan kepercayaan besar bahwa masa depan yang jauh sangat tidak pasti, karena kesalahan dalam estimasi tren menjadi sangat penting saat meramalkan lebih dari satu periode di depan Kembali ke atas Dari halaman. Konstanta pemulusan dan dapat diperkirakan dengan cara yang biasa dengan meminimalkan kesalahan kuadrat rata-rata prakiraan 1 langkah di depan Ketika ini dilakukan di Statgrafik, perkiraannya berubah menjadi 0 3048 dan 0 008 Nilai yang sangat kecil dari Berarti model tersebut mengasumsikan perubahan sangat sedikit dalam tren dari satu periode ke periode berikutnya, jadi pada dasarnya model ini mencoba memperkirakan tren jangka panjang. Dengan analogi dengan pengertian usia rata-rata data yang digunakan dalam memperkirakan t Dia tingkat lokal dari seri, usia rata-rata data yang digunakan dalam memperkirakan tren lokal sebanding dengan 1, meski tidak persis sama dengan itu. Dalam hal ini ternyata 1 0 006 125 Ini bukan angka yang sangat tepat. Sejauh akurasi perkiraan tidak benar-benar ada 3 tempat desimal, namun memiliki urutan umum yang sama besarnya dengan ukuran sampel 100, jadi model ini rata-rata memiliki cukup banyak sejarah dalam memperkirakan tren perkiraan plot Di bawah ini menunjukkan bahwa model LES memperkirakan tren lokal yang sedikit lebih besar di akhir seri daripada tren konstan yang diperkirakan dalam model tren SES Juga, perkiraan nilai hampir sama dengan yang diperoleh dengan menyesuaikan model SES dengan atau tanpa tren. , Jadi ini model yang hampir sama. Sekarang, apakah ini terlihat seperti ramalan yang masuk akal untuk model yang seharusnya memperkirakan tren lokal Jika bola mata Anda plot ini, sepertinya tren lokal telah berubah ke bawah pada akhir Seri Wh Telah terjadi Parameter model ini telah diperkirakan dengan meminimalkan kesalahan kuadrat dari perkiraan satu langkah ke depan, bukan perkiraan jangka panjang, dalam hal mana tren tidak menghasilkan banyak perbedaan Jika semua yang Anda lihat adalah 1 Kesalahan depan-depan, Anda tidak melihat gambaran tren yang lebih besar mengenai perkiraan 10 atau 20 periode Agar model ini lebih selaras dengan ekstrapolasi data bola mata kita, kita dapat secara manual menyesuaikan konstanta perataan tren sehingga Menggunakan baseline yang lebih pendek untuk estimasi tren Misalnya, jika kita memilih untuk menetapkan 0 1, maka usia rata-rata data yang digunakan dalam memperkirakan tren lokal adalah 10 periode, yang berarti bahwa kita rata-rata mengalami trend selama 20 periode terakhir atau lebih. Berikut ini perkiraan plot perkiraan jika kita menetapkan 0 1 sambil menjaga 0 3 Ini terlihat sangat masuk akal untuk seri ini, walaupun mungkin berbahaya untuk memperkirakan tren ini lebih dari 10 periode di masa depan. Bagaimana dengan statistik kesalahannya? Perbandingan model f Atau dua model yang ditunjukkan di atas dan juga tiga model SES Nilai optimal model SES adalah sekitar 0 3, namun hasil yang sama dengan sedikit atau kurang responsif masing-masing diperoleh dengan 0 5 dan 0 2. A Holt s linear exp smoothing Dengan alpha 0 3048 dan beta 0 008. B Holt s linear exp smoothing dengan alpha 0 3 dan beta 0 1. C Smoothing eksponensial sederhana dengan alpha 0 5. D Smoothing eksponensial sederhana dengan alpha 0 3. E Smoothing eksponensial sederhana dengan alpha 0 2 . Statistik mereka hampir identik, jadi kita benar-benar tidak dapat menentukan pilihan berdasarkan kesalahan perkiraan 1 langkah di depan sampel data Kita harus kembali pada pertimbangan lain Jika kita sangat percaya bahwa masuk akal untuk mendasarkan arus Perkiraan tren tentang apa yang telah terjadi selama 20 periode terakhir, kita dapat membuat kasus untuk model LES dengan 0 3 dan 0 1 Jika kita ingin bersikap agnostik tentang apakah ada tren lokal, maka salah satu model SES mungkin Lebih mudah untuk menjelaskan dan juga akan memberi lebih banyak tengkulak Prakiraan e-of-the-road untuk periode 5 atau 10 berikutnya Kembali ke atas halaman. Jenis ekstrapolasi tren terbaik adalah bukti empiris horizontal atau linier menunjukkan bahwa, jika data telah disesuaikan jika diperlukan untuk inflasi, maka Mungkin tidak bijaksana untuk memperkirakan tren linier jangka pendek yang sangat jauh ke masa depan Tren yang terbukti hari ini dapat mengendur di masa depan karena beragam penyebabnya seperti keusangan produk, persaingan yang meningkat, dan kemerosotan siklis atau kemajuan dalam industri Karena alasan ini, eksponensial sederhana Smoothing sering melakukan out-of-sample yang lebih baik daripada yang mungkin diharapkan, terlepas dari ekstrapolasi tren horisontal naif Modifikasi tren yang teredam dari model pemulusan eksponensial linier juga sering digunakan dalam praktik untuk memperkenalkan catatan konservatisme ke dalam proyeksi trennya. Tren yang teredam Model LES dapat diimplementasikan sebagai kasus khusus model ARIMA, khususnya model ARIMA 1,1,2. Mungkin untuk menghitung interval kepercayaan yang ada. Nd prakiraan jangka panjang yang dihasilkan oleh model pemulusan eksponensial, dengan menganggapnya sebagai kasus khusus model ARIMA Hati-hati tidak semua perangkat lunak menghitung interval kepercayaan untuk model ini dengan benar Lebar interval kepercayaan bergantung pada kesalahan RMS model, ii tipe Perataan sederhana atau linear iii nilai s dari konstanta penghalusan dan jumlah periode yang Anda perkirakan secara umum, interval menyebar lebih cepat karena semakin besar dalam model SES dan menyebar lebih cepat bila linier dan bukan sederhana. Smoothing digunakan Topik ini akan dibahas lebih lanjut di bagian model ARIMA dari catatan Kembali ke atas halaman. Versi robust dari loess yang memberikan bobot lebih rendah pada outlier dalam regresi Metode ini memberikan bobot nol pada data di luar enam penyimpangan absolut rata-rata. Y, span, metode menetapkan rentang metode untuk span Untuk metode loess dan lowess, rentang adalah persentase dari jumlah total titik data, kurang dari atau sama Untuk 1 Untuk rata-rata bergerak dan metode Savitzky-Golay, rentang harus aneh span bahkan secara otomatis dikurangi dengan 1.yy y halus, sgolay, derajat menggunakan metode Savitzky-Golay dengan derajat polinomial ditentukan oleh derajat. yy mulus y, span , Sgolay, derajat menggunakan jumlah titik data yang ditentukan oleh rentang dalam rentang perhitungan Savitzky-Golay harus ganjil dan derajatnya harus kurang dari span. yy smooth x, y juga menentukan x data Jika x tidak disediakan, metode yang membutuhkan x Data berasumsi x 1 panjang y Anda harus menentukan x data bila tidak seragam spasi atau disortir Jika x tidak seragam dan Anda tidak menentukan metode lowess digunakan Jika metode smoothing membutuhkan x untuk diurutkan, pemilahan terjadi secara otomatis. gpuarrayYY smooth GpuarrayY melakukan operasi pada GPU Input gpuarrayY adalah vektor kolom gpuArray Output gpuarrayYY adalah vektor kolom gpuArray Sintaks ini memerlukan Parallel Computing Toolbox. Note Anda dapat menggunakan input gpuArray x dan y dengan fungsi yang halus, tapi ini Hanya disarankan dengan metode standar, bergerak Menggunakan data GPU dengan metode lain tidak menawarkan keuntungan kinerja. Pilih Filter MA Negara Saringan Rata-Rata Anda. Load filter rata-rata bergerak adalah filter Low Pass FIR Finite Impulse Response sederhana yang biasa digunakan untuk Merapikan serangkaian sinyal data sampel Diperlukan sampel M sampel input sekaligus dan mengambil rata-rata sampel M tersebut dan menghasilkan titik keluaran tunggal Ini adalah struktur Low Pass Filter LPF yang sangat sederhana yang berguna bagi ilmuwan dan insinyur untuk memfilter. Komponen bising yang tidak diinginkan dari data yang dimaksud. Karena panjang filter meningkatkan parameter M, kehalusan output meningkat, sedangkan transisi tajam dalam data menjadi semakin tumpul. Hal ini menyiratkan bahwa filter ini memiliki respon domain waktu yang sangat baik namun respons frekuensinya buruk. Filter MA melakukan tiga fungsi penting.1 Ini mengambil titik masukan M, menghitung rata-rata titik M tersebut dan menghasilkan titik keluaran tunggal 2 Karena penghitungan perhitungan melibatkan filter yang memperkenalkan jumlah penundaan yang pasti 3 Filter bertindak sebagai Low Pass Filter dengan respons domain frekuensi yang buruk dan respons domain waktu yang baik. Kode Matlab. Kode matlab berikut mensimulasikan respons domain waktu M - Titik Moving Average filter dan juga plot respon frekuensi untuk berbagai filter lengths. Time Domain Response. Input ke MA filter.3-point MA filter output. Input ke Moving average filter. Response dari 3 point Moving average filter.51-point MA filter Output.101-point MA filter output. Response dari 51-point Moving average filter. Response dari 101-point Moving average filter.501-point MA filter output. Response of 501 point Moving average filter. Pada plot pertama, kita memiliki Masukan yang masuk ke filter rata-rata bergerak Masukannya berisik dan tujuan kita adalah mengurangi noise Angka berikutnya adalah respon output dari filter Moving Average 3 titik. Dapat disimpulkan dari gambar bahwa Moving Average 3 titik. Filter tidak banyak melakukan penyaringan kebisingan Kami meningkatkan keran filter sampai 51 poin dan kita dapat melihat bahwa noise pada output telah berkurang banyak, yang digambarkan pada gambar berikutnya. Frekuensi Respon Filter Bergerak Rata-rata dari berbagai panjang . Kami meningkatkan keran lebih jauh ke 101 dan 501 dan kita dapat mengamati bahwa meskipun - meskipun suaranya hampir nol, transisi yang tumpul secara drastis mengamati kemiringan di kedua sisi sinyal dan membandingkannya dengan transisi dinding bata yang ideal di Masukan kami. Respons Frekuensi. Dari respons frekuensi, dapat dikatakan bahwa roll-off sangat lambat dan redaman pita stop tidak baik. Mengingat redaman pita stop ini, jelas, filter rata-rata bergerak tidak dapat memisahkan satu pita frekuensi dari yang lain. Seperti yang kita ketahui bahwa kinerja yang baik dalam domain waktu menghasilkan kinerja yang buruk dalam domain frekuensi, dan sebaliknya Singkatnya, rata-rata bergerak adalah filter pemulusan yang sangat baik tindakan pada saat melakukan Utama, tapi filter low-pass yang sangat buruk menyaring tindakan di domain frekuensi. Tautan Eksternal. Buku yang Direkomendasikan. Sidebar utama.

Comments

Popular posts from this blog

Pindah Rata Filter Matlab Kode Contoh

Dibuat pada hari Rabu, 08 Oktober 2008 20 04 Terakhir Diperbaharui pada Kamis, 14 Maret 2013 01 29 Ditulis oleh Batuhan Osmanoglu Hits 41574.Moving Average Di Matlab. Seringkali saya mendapati diri saya membutuhkan data rata-rata saya harus mengurangi sedikit kebisingan. Aku menulis beberapa fungsi untuk melakukan apa yang saya inginkan, tapi matlab s dibangun di fungsi filter bekerja cukup bagus juga Disini saya akan menulis tentang 1D dan 2D rata-rata data.1D filter dapat direalisasikan dengan menggunakan fungsi filter Fungsi filter memerlukan setidaknya Tiga parameter masukan koefisien pembilang untuk filter b, koefisien penyebut untuk filter a, dan data X tentu saja. Filter rata-rata yang sedang berjalan dapat didefinisikan secara sederhana oleh. Untuk data 2D kita dapat menggunakan fungsi filter2 Matlab s Untuk informasi lebih lanjut Tentang bagaimana filter bekerja, Anda dapat mengetik. Berikut adalah penerapan cepat dan kotor dari 16 dengan 16 filter rata-rata bergerak Pertama, ...